Hemocompatibility of siRNA loaded dextran nanogels.
نویسندگان
چکیده
Although the behavior of nanoscopic delivery systems in blood is an important parameter when contemplating their intravenous injection, this aspect is often poorly investigated when advancing from in vitro to in vivo experiments. In this paper, the behavior of siRNA loaded dextran nanogels in human plasma and blood is examined using fluorescence fluctuation spectroscopy, platelet aggregometry, flow cytometry and single particle tracking. Our results show that, in contrast to their negatively charged counterparts, positively charged siRNA loaded dextran nanogels cause platelet aggregation and show increased binding to human blood cells. Although PEGylating the nanogels did not have a significant effect on their interaction with blood cells, single particle tracking revealed that it is necessary to prevent their aggregation in human plasma. We therefore conclude that PEGylated negatively charged dextran nanogels are the most suited for further in vivo studies as they do not aggregate in human plasma and exhibit minimal interactions with blood cells.
منابع مشابه
Title: Interactions of siRNA loaded dextran nanogel with blood cells Authors: B. Naeye,
Although the behavior of nanoscopic delivery systems in blood is an important parameter when contemplating their intravenous injection, this aspect is often poorly investigated when advancing from in vitro to in vivo experiments. In this paper, the behavior of siRNA loaded dextran nanogels in human plasma and blood is examined using fluorescence fluctuation spectroscopy, platelet aggregometry, ...
متن کاملPEGylation of biodegradable dextran nanogels for siRNA delivery.
Delivering intact small interfering RNA (siRNA) into the cytoplasm of targeted cells in vivo is considered a major obstacle in the development of clinically applicable RNA interference-based therapies. Although dextran hydroxyethyl methacrylate (dex-HEMA) nanogels have been reported to be suitable carriers for siRNA delivery in vitro, and are ideally sized (approximately 180 nm) for intravenous...
متن کاملProlonged gene silencing by combining siRNA nanogels and photochemical internalization.
Small interfering RNAs (siRNAs) show potential for the treatment of a wide variety of pathologies with a known genetic origin through sequence-specific gene silencing. However, siRNAs do not have favorable drug-like properties and need to be packaged into nanoscopic carriers that are designed to guide the siRNA to the cytoplasm of the target cell. In this report biodegradable cationic dextran n...
متن کاملMathematical Kinetic Modeling on Isoniazid Release from Dex-HEMA-PNIPAAm Nanogels
Objective(s): The quantitative calculation of release data is more facil when mathematics come to help. mathematically modeling could aid optimizing and amending the delivery systems design. Aim of this study is to find out the isoniazid release kinetic. Methods: In this work degradable temperature sensitive dextran-hydroxy ethyl me...
متن کاملLysozyme-dextran core-shell nanogels prepared via a green process.
A novel method has been developed for preparing nanogels with a lysozyme core and dextran shell. The method involves the Maillard dry-heat process and heat-gelation process. First, lysozyme-dextran conjugates were produced through the Maillard reaction. Then, the conjugate solution was heated above the denaturation temperature of lysozyme to produce nanogels. The nanogels are of spherical shape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 32 34 شماره
صفحات -
تاریخ انتشار 2011